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Abstract It is demonstrated that the integrnl exact solution generation methods for the one- 
dimensional Schr6dinger equation based on the Gelfand-Levitan formalism are in some cases 
equivalent to the differential ones based on the a-order Darboux transformation. Some new 
exact solvable potentials are senemled from the effective Coulomb potential and the hannonic 
oscillator potential. A new form of n-soliton potential (i.e. reflectionless potential with n 
discrete energy levels disposed in a desirable manner) based on an explicit expression for an 
n-order Wronski determinant constructed from hyperbolic functions and its orthonormal discrete 
spectrum eigenfunctions are given. 

1. Introduction 

Two different ways are known to construct the new one-dimensional Schrodinger equation 
exactly solvable potentials. The first, derived from the inverse scattering problem, is based 
on the Gelfand-Levitan or Marchenko equation [1-3] (see also for an excellent survey, [4]) 
and represents an integral transformation of the solutions of the initial Schrodinger equation. 
The second uses the differential transformation proposed by Darboux [5] ,  developed by 
Crum [6] and Krein [7], and applied in a restricted form to the supersymmetric quantum 
mechanics (there are many papers on this subject; see. for example, [SI). The two 
methods lead to similar results, but the origin of this similarity has not been properly 
discussed. In a recent paper [9] there are some discussions and the connection of the 
degenerate kernel integral transformation with the Darboux transformations is established. 
We obtained a similar result but in a different way. In this paper, with the help of some 
properties of an n-order Wronski determinant, it is demonstrated that the differential n-order 
Darboux transformation presented in its general form by Crum [6] may have the form of 
an integral transformation. The integral exact solution generation methods based on this 
transformation are consequently equivalent to the differential ones based on the n-order 
Darboux transformation. 

It is worthwhile mentioning an interesting work by Mielnik [IO] concerning the use of 
the factorization  method to construct new potentials with an energy spectrum coinciding 
with that of the known Hamiltonian. One can find the discussion about the connection of 
the factorization method with the n-order Darboux transformation in [ll]. 

One usually constructs the Darboux transformation operator with the help of the ground 
state function or. with a function which does not belong to the discrete spectrum of the 
initial Schrodinger equation [12-141. This limitation is due to the condition that the 
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potential difference between a new potential and an initial one is a regular function. In this 
way, by performing a chain of Darboux transformations we obtain a chain of well defined 
Hamiltonians. Some properties of the Hamiltonians thus obtained are discussed in [15-171. 
In this connection we will point out that there are other ways to construct well defined 
potentials using the Darboux transformation. The first is to use two-by-two juxtaposed 
discrete spectrum wavefunctions as transformation functions in the chain of transformations. 
This possibility follows from Krein's theorem [7] and was recently rediscovered by Adler 
[18]. The chain of the Hamiltonians will in this case contain ill-defined elements which, 
nevertheless, do not affect the regularity of the final potential. From the point of view of 
supersymmetric quantum mechanics we shall .obtain here higher-derivative supercharges, 
forming together with the super-Hamiltonian a high-order superalgebra [ll]. The second is 
to use the integral representation of the Darboux transformation. In this paper, the direct 
correspondence between the differential n-order Darboux transformation and an integral one 
is established. 

We will note that this representation can be helpful in the construction of soliton- 
like solutions of the nonlinear differential equation. The Darboux transformation seems 
very fruitful in soliton theory (see 1191 and references therein). In this connection a 
new representation of the well known n-soliton potential with n discrete spectrum energy 
levels disposed in the desired manner based on a new closed form for the n-order Wronski 
determinant constructed from the hyperbolic functions is given. The orthonormal discrete 
spectrum wavefunctions of this potential are cited. 

As an example, the effective Coulomb potential is studied. We give two new regular 
potentials with a hydrogen-like spectrum. These potentials are unlike the effective Coulomb 
one around 0.1 e x c 10 au and tend to zero as z / x  when x tends to infinity. Another 
example is two potentials with a quasi-equidistant spectrum generated from the harmonic 
oscillator potential. One potential proceeds from the quadruple Darboux transformation and 
the other is a double well, and the energetic level of the ground state touches the potential 
curve at its maximum. 

2. Generalized Darboux transformation 

Let us consider the one-dimensional Schrodinger equation (setting A = 2m = 1) 

Ho+&) = E+&) HO = -d2/dx2 + V ( x )  x E [a, 61. (1) 

(We do not exclude infinite intervals for variable x . )  It is supposed that we know the general 
solution of this equation for all values of parameter E (complex in general). Potential V ( x )  
is supposed to be a sufficiently smooth function in [a, b]. In this paper we shall consider 
only those solutions of equation (1) which satisfy the zero boundary condition and the 
condition j+k(x)i < 00 at least in one of the bounds of interval [a, b]. If in addition we 
impose (in the case of a potential well) the same boundary condition in another bound of 
interval [a, b], we obtain the discrete spectrum of E = E, (if it exists). 

Single Darboux transformation permits one to obtain the general solution of another 
Schrodinger equation 

acting by differential first-order linear operator L on the general solution of equation (1) 

(OE(X)  = L+E(x)  L = L&) - d/&. (3) 
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The potential difference A ( x )  = U ( x )  - V ( x )  and function L&) from formula (3) must 
be determined on the basis of some solution @=(x)  of equation (1) with E = a (01 being an 
arbitrary parameter) called the transformation function 

Lo(x) = @;(X)/@&) A(x)  = -2Lb(x). (4) 
This procedure being applied n times leads to the generalized Darboux formula obtained 

by h m  [61 

Function W,(x) coincides with Wronski determinant W,(x) = W(@a,,  . . . , eaa) (W 
being the usual symbol for a Wronskian) if potential V ( x )  and its n - 3 derivatives are 
continuous functions, WO+, (x )  is the Wronskian of the functions @&), @at ( x ) ,  . . . , @us(x). 
Every derivative from these Wronskians whose order exceeds the first can be expressed from 
equation (1) either by the function itself or by its first derivative. The derivative of even 
order @ f k ) ( x )  must be substituted by and that of odd order by ( -01)~@A(x).  
The Wronski determinant after these substitutions converts into the determinant called by 
us the Krein determinant and denoted as W*($u,, . . . , &J. 

The double Darboux transformation leads to the known integral transformations [3,4]. 
For the first transformation, we use some function @ d x )  and for the second @;'(x)(Cl + 
C 2 r  $ z ( z )  dz), which is the general solution of equation (2) with E = 01. We shall 
now show that the same transformation comes directly from expression (5) at n = 2 and 
generalizes this result to arbitrary n. 

If instead of the Wronskian W&) we introduce the function 

and decompose the determinant W&) in the first column we obtain for the function p,&) 
the following expression: 

(7 ) 
b e n  using the property W L , ~ ( X )  = @e(x)@#(x) ,  we can recalculate w,,,(x) using the 
following integral: 

wm,m = @dZ)@#;S(Z)dz + c (8) 

~ ( x )  = ( E  -a)[@&) - @&)w$(x)Wp.~(x)I. 

where the constant C is to be determined by the bottom integration bound. From this 
expression, neglecting the constant factor f l  - E ,  we obtain the integral representation for 
P d X )  

'PEW = @ E @ )  - f K(x,z)@dz)dz (9) 

which coincides with that used in [ I 4 1  except for the form of the operator kernel K ( x ,  z ) .  
The constant C connected with the function W g , ~ ( x )  is omitted in expression (9). This can 
be achieved by a proper choice of the low integration bound in which this function must 
vanish. 

The operator kernel from expression (9) 

K(x3.Z) = @&)w;;(x)@,(z) (10) 
differs from that used by previous authors [ I 4 1  by the condition 01 = p. We can realize 
the limit 8 + 01 in function W,,g(x) in different ways. This is due to the fact that 
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equation (1) with given ,3 = E has two independent solutions @p and 4 8  with the property 
W($q, qp) = constant If we use the combination %-(x) + (or - ,9) x constant x q p ( x )  as 
@b(x) in formula (S), then W,J(X) + W,,,(x) which should be calculated by the same 
formula (8) with an arbitrary value of the constant C. The formulae (S)<lO) perfectly 

8 + U  

coincide with those reported in [1,21. 

mz 

i # j  
W,,(x) = R(ori - orj) x 

W W 2  w,,,, wa,,, ..' We, ,U" 
w,,,, w,,,*, w,,,, " ' W W "  
was., WL75P4 Wa,,, " ' w=%z" . (114 

Wan-,,u, WQ~-, ,Q,  Wmn.l,m6 ... Wmn-,,an 

i # j  

X 

The product n$i(ori - orj) contains the same factors (ori - orj) as those appearing in the 
definition of functions W.,.,, (6). 

If we put 

-ai = &i i = 1,3,5,. . . , n - I 

and impose the condition &i -+ 0, we can verify the following limiting properties of the 
determinants WU, ( x )  and Wh+l (x):  

where D,(x) is the determinant of the symmetric matrix with elements W.,&). The deter- 
minant Dm+l(x)  is constructed from D&) by adding to its matrix a column of functions 
@ E ( x ) .  &, (x ) ,  h2(x), . .., emm(x)  and a row of WWE(X) ,  We2.&(x), . . . . Wem,.&). The 
potential difference A ( x )  determined from formulae (5) becomes Bagman's formula [20] 
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and the function p,&) coincides with that given in the paper of Theis [21] (see also 141). 
After decomposition of the last determinant on the first row we obtain 

"L 

( P E @ )  = @.&) f Dii(x)  W ~ , . E ( X ) W " " ) ( X )  (13) 
id 

where W " . E ) ( ~ )  is the co-factor of element W n l , ~ ( x )  in the determinant D,+l(x). According 
to equation (8) the last expression can be rewritten as formula (9) with K ( x ,  z) in the form 

where Y+(z) is the mahix row with elements $ra,(z) and W ( x )  is the mahix column with 
elements w".E)(x)  0;' ( x ) .  

( x ) ,  the co-factor W'i,E'(x) 
coincides with the determinant obtained from D,(x) by changing the ith column with that 
of functions @e, ( x ) ,  . . . , ( x ) .  The decomposition of this determinant by the first column 
is consequently equal to the inverse matrix of the determinant D,(x) matrix multiplied by 
the column & ( x ) ,  . . . , @"(x) with the sign changed. Thus, the kernel operator (14) is 
given by 

where D ( x )  is the matrix of the determinant D,(x). Transformation (9) coincides in this 
case with that used in [ 1 4  

We have considered even n =.2m in equation (5). In the case of odd n = 2m + 1, the 
limiting properties of W?m+z(x) and W?m+l(x) can easily be obtained from formula (11). 
The integral transformation in this case becomes 

K ( x ,  z) = Y+(Z)W(X) (14) 

According to the construction of the determinant 

K ( x ,  Z) = Y+(z)D-'(x)'4'(x) (15) 

( P E ( X )  = ] ~ ~ K ( x , z ) @ E ( z ) ~ z .  

In the n = 3 case, the operator kernel K ( x ,  z) is written as 

The potential difference A ( x )  defined by  the^ generalized Darboux transformation (see 
the second of equations (5)) is a regular function in (a, b), if the Krein determinant W,(x) 
conserves its sign in interval (a, 6). When ai are the points of the discrete spectrum of 
the regular Sturm-Liouville problem, the conservation sign condition of the determinant 
W,(x)  is known [7]: W,(x) = W*(@ak,, _.. , @+ conserves its sign in (a,b) if the 
integers (0 <)kl < kz < . . . < kn satisfy the condition (k - kl)(k - k 2 ) .  . . (k  - k,J > 0 
for all k = 0, 1,2, .  . .. This condition is true, in particular, if ak,, .. .,aka are two 
by two the juxtaposed points of the discrete spectrum. Values of ai will be absent 
in the discrete spectrum of the new Hamiltonian H I .  In the simplest case, we have 
W,(x)  = W,(@", @-+I) # 0 for all n. This property was recently rediscovered by Adler 

Another case when Wz(x)  # 0, x E (a .  b), corresponds to the limit a2 -+ al: The new 
potential U ( x )  = V ( x )  + A ( x )  being determined from formulae (8) and (5) will depend on 
an arbitrary  constant^ C but its discrete~spectrum eigenvalues will not. When C > 0, the 
first relation (5) (or formula (9)) defines all discrete spectrum eigenfunctions of equation (2) 
if, for @.E(x) ,  those of equation (1) are taken. The discrete spectrum eigenvalues of H1 
will coincide with those of Ho. If C = 0, the eigenstate of the Hamiltonian Hi with energy 
E = a1 is excluded from its discrete spectrum. The solution of differential equation (2) 
with this value of E is p&) = @ ~ ( x ) [ ~ " @ ~ ( z ) d z l - ~ .  This function does not obey the 
boundary condition of the discrete spectrum. 

[W. 
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4. Examples 

As an example, let us consider the first effective Coulomb potential 

22 

n2 E --- n = l , 2 . 3 ,  ... 2z U1 + 1) V ( x )  = -- + - 
X X 2  

n -  
. .  

* , d x )  = X I + '  exp(-zx/n)L~~'_:ll(2zx/n) 
where LP;(x) are generalized Laguerre polynomials. 

The double Darboux transformation gives the simplest potential when the transformation 
functions have I = 0, n1 = 2, nz = 3. The case n1 = 1, nz = 2 corresponds to a double 
Darboux transformation with the ground state'functions as transformation functions. It is 
well known [22] that the new potential in this m e  maintains the form of the initial one 
except for the value of 1. By using formulae (3, we obtain a new potential 

22 10 100 40 
x x2 xz  X 2  (19) 

V ( X )  = -- + - + -(3 -2xz)Q;'(xz) - -(2 -XZ)Q;I(XZ) 
- ,  

QI(X) = 15 - lox + 2x2 

q l ( x )  = N1x3 exp(-xz)Q;l(xz). 
and the wavefunctions of a new Hamiltonian. The ground state wavefunction is 

The states with n = 2 and n = 3 are absent in the discrete spectrum of potential (19). When 
n 4 we have the excited state functions 

qn-2(x) = N"-2x3exp(-xz/n)Pn-z(xz)Q;'(xz) 
Ni being the normalization constants and P,(x) the polynomials of order n + 2 whose 
connection with the Laguerre polynomials Lz(x)  is established by formulae (5) 
X ~ P , - ~ ( X )  = 10n(-54 + 63x - 22x2 + 2 ~ ~ ) L ~ - ~ ( Z x / n )  

n = 4,5,6, .  . . 

' +L~-,(2x/n)[270n(n - 1) - 45(2 - 7n + 5n2)x 
+10(6 - lln + 5n2)x2 - 2(6 - 5n + n2)x3].  

The first three polynomials are 
PI(x)=~~ P z ( ~ ) = 8 4 - 6 3 ~ + 1 8 ~ ~ - 2 ~ ~  
P ~ ( x )  = 875 - 700~ + 220~' - 30x3 + x4. 

The properties of P,(x) strongly differ from the properties of the Laguerre polynomials, 
though they are completely defined by the latter. For example, if we pass from PO@) to 
PI(x), Pz(x). . . . the order of P.(x) varies from 0 to 3,4, . . . and there are no polynomials 
with orders equal to 1 and 2. But Pn(x) has n - I zeros in the (0, a) interval, and this fact 
corresponds well to the oscillator theorem for the Hamiltonian HI. A set of eigenfunctions 
of the new Hamiltonian obtained by the double Darboux transformation is complete in the 
space L2(R),  ( R  = [a,&]) of square integrable on interval [a,&] functions if the initial 
Hamiltonian has a complete set of eigenfunctions in the same space (in 1181 this theorem 
is proved for an arbitrary initial potential). 

The normalization constants Ni can easily be calculated due to the factorization property 
of the n-order Darboux transformation [I 1, U]. We do not dwell on this calculation. 

Consider now a triple Darboux transformation defined by formulae (16) and (17) with 
nl = nz = 2, n3 = 1. The new potential for this case is 

22 2 
V ( X )  -- + - +ZX~Z"Q;~(XZ) + ~ x ~ z ~ ( ~ - x z ) Q ; ' ( x z )  

x x2 (20) 
Qz(x) = 24 + 24x + 12x2 + 4x3 + x 4  + C exp(x) 
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with an arbitrary parameter C. The form of potentials (20) is similar to the form of the 
Coulomb potential with 1 # 0, but in contrast to the latter there are two minima on the 
potential curve, and it tends to zero with increasing x more slowly. The first minimum is 
due to the attractive Coulomb part -z/x and the second one to the presence of exp(x) in 
Q z ( x ) .  At C + 0, this minimum moves to the left and merges with the first one. It is 
interesting to note that we actually have a family of isospectral potentials whose graphs, 
plotted for various values of constant C, resemble the diagram o f ~ a  moving soliton. From 
formulae (5) we obtain the eigenfunctions of HI. The normalized-at-unity ground state 
function is written as 

- ( x )  = z5”J i3qzmJu- ’ (x )  c z 0, c < -4! 

For the normalized excited state functions we obtain 

v n ( x )  = 2N:2n/z(n2 - 4)-’/’ exp(-xz/n)[x2(3 - x z / n  + 4Q;’(xz)R(xz)) 
n = 3,4, S, . . . 

R ( x )  = 96 + 72x + 24x2 + 4x3 + x 5  + C(4 - x )  exp(x) 

where Nfz is the normalization constant for the hydrogen-like function (18) at 1 = 2. 
The level n = 1 is out of the discrete spectrum of Hamiltonian HI. When C = 0, the 

levels n = 1 and n = 2 are omitted, The function qp(x) in the last case is the ground state 
function of potential (20). 

Another simple example of a multiple Darboux transformation gives the harmonic 
oscillator with 

xLn-,(2xz/n) 5 - (2tx3/n)&(2xzjn)~ 

V ( x )  = 4.2 - 1 
2’  

Depending on the multiplicity of the transformation with the functions of the discrete 
spectrum 

h ( x )  = exp(-$x2)H,(x/&) n = 0,1,2,. . . 
H,(x) being the Hermite polynomials, we can obtain the multiplewell potentials. For 
instance, the quadruple transformation with n = 1 ,~2 ,5 ,6  gives the triple-well potential 

U ( x )  = + tx ’  - SQ;] (x)(263 - 4xz - x4 - 2x6) 

+64Q;’(x)(46S + 103Sx2 - 4Sx4 + 17x6) 
Qs(x )  = 15 + 30x2+ 2x6 + X* 

with the first minimum at x = 0 with U(0) = -4.5 and two symmetric minima at 
lxminl rs 1.39 with Cl(x,,.ii.) X 0.34. There are two symmetric maxima at 1x-l U 0.76 with 
U(x,,,,) x 2.72. In the discrete spectrum of this potential the levels with n = 1,2,S, 6 are 
skipped. We do not cite the wavefunctions for this potential. It is not difficuh to obtain 
them from equations (5). 

Another interesting potential occurs for the single Darboux transformation with the 

p4), which is the solution of equation (1) for the harmonic oscillator potential with E = -4.~ 
This potential is a double well with lxminl rs 1.68, U(x,.) rs -0.94 and with a maximum 
at x = 0 and U(0)  = -;, i.e. the energetic level of the ground state touches the potential 
curve. In its discrete spectrum one additional level E = -4 occurs related to the spectrum of 
the harmonic oscillator potential with the ground state eigenfunction (up to a normalization 
factor) m(x) = @I,!,&). 

function @-I&) = o F I ( ~ ,  3 1 4  z x  ) (04 is the usual symbol for the hypergeomeaic function 
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By choosing integral transformations (91, (15) or (16), (17) we can obtain asymmetric 
potentials with an oscillator spectrum. The simplest of them contains the probability integral 
erf(x) (or erfc(x)) (see e.g. [IO]). 

We will now give one significant example of a potential with n discrete energy levels 
disposed in a desirable manner obtained by the n-order Darboux transformation. This 
potential is cited in [ l l ]  but the normalized discrete spectrum wavefunctions are not. It 
should be noted that this potential (but in another form) is well known in soliton theory 
(see, for example, [23]) as the n-soliton potential for the KdV equation. The properties of 
n-soliton solutions of the KdV equation were studied by Wadati and Toda [24]. The term 
'n-soliton potential' was introduced by Its and.Matveev [Z]. 

Consider the free-particle Schriidinger equation, V ( x )  = 0. Choose, as transformation 
functions, the following set of solutions of equation (1): 
@zi-l(x) = cosh(a2i-lx + bzi-1) (21) 
where a;+l > a; 0 and bj are arbitrary real parameters. The number of transformation 
functions n can be both even and odd. It is remarkable that the Kreinian of this set, using 
elementary algebra, can be presented as a sum of hyperbolic cosines 

@zi(x) = sinh(a2x + bz;) i = 1,2, . . . 

All coefficients yk have the form yi: = c;, c; = &U;, E = f l .  The items in the 
sum (22) can be subdivided into groups. One has n / 2  + 1 groups when n is even and 

(n + 1)/2 groups when n is odd. Every group except the last includes ( i )  members; 

k = 0.1,. . . , n /2  - 1 when n is even and k = 0.1,. . . (n - 3)/2 when n is odd. The last 

group contains ( ;z) members when n is even and ( (n members when n is 

odd. Each group differs from another by the number of values of E = -1. In the first group 
(comprised of only one item) all E = 1, in the second group (n items) only one E = -1 
in each item and in the third group two E = -1  in each item, etc. The coefficients are 
constructed in the same manner but = dj, dj = Eb;. E = f l .  For the coefficients 
Bk we have: Bk = ny:j IC; - cjl. It is interesting to note that after the absolute values of 
mulipliers (U; - uj) in BX for a;+l > ai are calculated, formula (22) becomes correct for 
arbitrary disposed a;. 

To calculate a new potential A " ) ( x ) ,  it is sufficient now to take the second logarithmic 
derivative from the Kreinian (22) (see formula (5)). 

The normalized-at-unity discrete spectrum wavefunctions are written as follows: 

where W2'(q1,. . . , @") is the (n - 1)-order Krein determinant constructed from the 
functions +I ( x ) .  . . . , @"(x) except for the function e;@). These functions have the property 
H ( " ) q ; ( x )  = -a?qi(x) so that they are enumerated in inverse order, i = n corresponds to 
the ground state function. 

We note that the potential thus obtained is reaectionless and coincides with the well 
known n-soliton potential. This fact can be established due to the following property: any 
factor exp(yx)(y = constant) for the Kreinian (20) does not affect the potential A " ) ( x ) .  In 
the case n = 2 we can easily obtain well known expressions for the two-soliton potential 
(see, for example, [231). 
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The explicit expression for the three-level potential is: 

1 x[(u; - u ~ ) ~ c o s ~ ( ~ O ~  + 2ej) + (U; + ~j)~cosh(28i  - 20j)l 

where 8; = a;x + b;. i, j 3  k = 1,2,3, i, j ,  k are not equal to each other, the function W(n) 
differs from the third-order Kreinian by the  factor^ 4: 

W ( X )  = 4 W d @ i , @ z , @ 3 )  =(a3 -~1)(~3-az)(~z--al)cosh(81+ez+e3) 
+(a3 + a m 3  - ~ ~ ) ( ~ ~ + ~ ~ ) c o s h ( - e ~ . + e ~ ~ + e ~ )  

+(a3 + a m 3  + ~ ~ ) ( ~ ~ - a ~ ) c o s h ( e ~  +ez -e3). 
+(a3 -al)(a3+uZ)(uz+ul)cosh(81 -6 ' z i -W 

We will make some comments on the calculation of the normalization constants for the 
discrete spectrum eigenfunctions of isospectral Hamiltonians such as the n-soliton one. In 
the case where the absolute value of the transformation function denoted by u ( x )  tends to 
infinity on both bounds of the interval [a, b], the ground state eigenfunction of the new 
Hamiltonian after a single Darboux transformation is [4] (up to a normalization factor) 
q&) = U - ' @ ) .  It should be noted that the initial potential V ( x )  can have no discrete 
spectrum at all (as in the case of the one-soliton potential). We then obtain a new potential 
with a single discrete spectrum level E = Eo. Two linearly independent solutions U'@) 
and &), from which the transformation function is composed, U(T) = U I ( X )  + Cuz(x),  
can always be chosen such that their Wronskian is equal to unity, W(u1,  UZ) = 1. This 
property is very useful for the calculation of the normalization constant for the function 
qo(x )  since it implies for the primitive of the function &x)  the following expression: 

/"&x)dx = [C + ~i(x) /~z(x) l - ' .  

5. Conclusion 

In conclusion it is necessary to note that the main result of this paper is the proof of the 
equivalence of the integral and differential exact solution stationary Schrodinger equation 
generation methods. This means that the integrals involved in these methods are calculable, 
and the use of either the differential or integral method is at the reader's discretion. 
Nevertheless it seems that the differential methods aie preferable in quantum mechanics 
because with their help it is easier to obtain the normalized set of eigenfunctions. 
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